Francium Trapping Facility

TRIUMF’s Francium Trapping Facility is using rare francium atoms to capture an ultra-precise fingerprint of atomic weak force symmetry breaking and potential beyond-Standard Model physics. Among the four fundamental forces (along with electromagnetism, the strong force, and gravity) the weak force is the only one which violates symmetry: mirror image processes (parity); and time-reversed ones … Continued

Laser spectroscopy

The unique TRIUMF-based Collinear Fast-Beam Laser Spectroscopy facility is using the smallest changes in electrons’ quantum-level jumps to map the extreme frontier of nuclear structure in rare isotopes. The core challenge in studying these extreme nuclei, ones with lopsided ratios of neutrons and protons, is that they’re very short-lived. The rare isotope must be produced, … Continued

Science Technology Facility

TRIUMF’s Science Technology Facility provides the expertise and specialized construction capacity for the design-to-installation creation of state-of-the-art particle detectors. The Science Technology Facility’s two dozen staff have contributed to the fabrication, in part or full, to more than a dozen detectors for subatomic particle and nuclear physics experiments based at TRIUMF and Canadian and international … Continued

Targets and Ion Sources

At its core, a rare isotope production target is a material, such as uranium carbide, that when irradiated undergoes nuclear reactions that produce rare isotopes. TRIUMF’s two target drivers, accelerated protons and electrons, can each be used with a variety of target materials to induce different kinds of nuclear reactions and produce different types and … Continued

Post-target accelerators

TRIUMF’s rare isotope production facilities also include a series of three different post-target accelerators that accelerate heavy ions to energies required by TRIUMF experiments, for example mimicking the energetic conditions of rare isotopes in an exploding star. The three accelerators operate sequentially in a way analogous to the gearing system in a car with a … Continued


The BRIKEN (Beta-delayed Neutron Measurements at RIKEN) international collaboration is providing a new window into our stardust origins by making the first-ever decay measurements of many of the rare neutron-rich isotopes central to heavy element formation in stars.  BRIKEN, a TRIUMF collaboration, is based at the RIKEN Nishina Center for Accelerator-Based Science in Wako, Japan.   The … Continued


TRIUMF’s Theory Department is unique in Canada as a theoretical team embedded in a world-leading rare isotope laboratory. This context provides a synergistic interface between theorists whose original work is informed by leading-edge experimental technologies and results, and in turn whose independent research guides and inspires experimental approaches.   The Theory Department specializes in two areas: … Continued


With the DSL (Doppler Shift Lifetimes) facility, TRIUMF scientists are shining light on element formation in stars by measuring nuclear excited states that last for only femtoseconds, thousandths-of-a-trillionth-of-a-second.  Collaboratively with facilities including DRAGON and EMMA, the DSL facility is a core part of TRIUMF’s nuclear astrophysics research program.  A nuclear-excited state is a nucleus that contains excess energy and spontaneously releases it, for example as a gamma ray, to reach a more stable … Continued


With TUDA (the TRIUMF U.K. Detector Array), the TRIUMF UK Detector Array, TRIUMF scientists and international collaborators are making critical insights into key stellar element formation pathways that can only be experimentally studied using accelerated rare isotopes.  TUDA, and facilities such as DRAGON and EMMA, are core parts of TRIUMF’s astrophysics research program. TUDA’s precision astrophysics nuclear reaction measurements are used by researchers worldwide and integrated into the latest stellar computational models, providing astronomers with … Continued