High Energy Frontier

Constraints on new phenomena via Higgs boson couplings and invisible decays

Constraints on new phenomena via Higgs boson couplings and invisible decays: A crucial question in particle physics is whether the Higgs boson discovered in 2012 is truly the fundamental scalar predicted by the Standard Model (SM). Strong theoretical arguments suggest that the SM is only an approximation to a more fundamental theory such as supersymmetry or composite Higgs models, which predict modified properties of the Higgs with respect to SM expectations. As published in the Journal of High Energy Physics (2015), the results of several analyses of production and decay rates of the Higgs boson in different channels were combined to determine how the couplings scale with mass and hence put constraints on various extensions of the SM. Vector boson processes and associated WH/ZH production set an upper limit on the Higgs boson decay branching ratio to invisible particles, such as dark matter, of 25%.